
MOBILE DEVICES HAVE STEADILY
gained acceptance as a multimedia
platform. Current tools offer applica-
tion developers options to use various
technologies—for example, Java, Open
C, Python, Flash Lite, XHTML/CSS,
JavaScript, and Mobile Ajax—to imple-
ment highly functional mobile appli-
cations. Content developers can work
with audio, video, multimedia messag-
ing, and Flash to create rich and com-
pelling mobile content.

Although the choice of develop-
ment platform is largely market-driven,
it also depends on the characteristics
of available platforms and the require-
ments of particular applications. To
illuminate the status and trends in
current development platforms, we re-
viewed and compared four popular
mobile-application runtime environ-
ments with respect to various quantita-
tive and qualitative criteria. We based
the comparisons on data from ear-

lier research,1 technical specifi cations,
white papers, and an informal survey of
32 mobile-application developers with
hands-on experience using the plat-
forms we reviewed. Most importantly,
we developed a simple game application
and implemented it on all four platforms
as a case study for highlighting the main
characteristics and relative merits and
shortcomings of the four platforms.

We describe the general results of
this comparison as well as details from
the game application’s development. We
summarize the results from all sources
in a table and conclude with our assess-
ment of how appropriate the different
platforms are with respect to critical
application-development requirements.

Four Mobile-
Application Platforms
Numerous development platforms are
available for handheld devices, includ-
ing native environments such as the
Symbian, OpenC, iPhone, and Palm
operating systems; Web runtimes such
as widgets; and runtime environments
such as Python, Lazarus, Brew, and the
four we review here—Java Mobile Edi-
tion (ME), .NET Compact Framework
(CF), Flash Lite, and Android—which
currently enjoy the largest developer
and deployment bases. Figure 1 sum-
marizes the software stacks for these
four platforms.

Java ME
This subset of the Java platform pro-
vides a certifi ed collection of Java APIs
for developing software for resource-
constrained devices such as cell phones,
PDAs, and set-top boxes (http://java.
sun.com/javame).

Features. Java ME runs on top of a
kernel-based virtual machine (KVM),
which allows reasonable, but not

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E 	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 77

Development
Platforms
for Mobile
Applications:
Status and Trends

Damianos Gavalas and Daphne Economou, University of the Aegean

// A comparison of four popular runtime environments

clari� es the options available for developing applications

that run on resource-constrained mobile devices. //

FEATURE: MOBILE APPLICATIONS

78	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

complete, access to the underlying de-
vice’s functionality. Java ME supports
cross-platform development through
confi gurations and profi les:

• A con� guration defi nes the mini-
mum Java VM features and library
set for a horizontal family of de-
vices—that is, devices with similar
processing and memory limitations,
user interface requirements, and
connection capabilities.

• A pro� le comprises libraries spe-
cialized in the unique characteris-
tics of a particular device class.

All Java ME-enabled mobile devices
currently support the following confi g-
uration and profi le specifi cations:

• Connected Limited Device Con� g-
uration (CLDC), a framework for
Java ME applications targeting re-
source-constrained devices. CLDC
contains a strict subset of the Java
class libraries needed for mobile-

application development.
• Mobile Information Device Pro� le

(MIDP), a specifi cation for using
Java on embedded devices such as
mobile phones and PDAs. MIDP is
part of the Java ME platform and
sits on top of CLDC.

Java applications developed over
CLDC/MIDP are referred to as MID-
lets and are typically packaged in Java
archive (JAR) fi les.

Java ME is designed to be cross-plat-
form, so specifi cation and implemen-
tation are two separate processes. The
Java Community Process (JCP) refers
to a formalized specifi cation process
that lets interested parties get involved
in defi ning Java platform versions. JCP
uses Java Specifi cation Requests (JSRs)
to document proposed additions to the
Java platform. A committee of mobile-
solution providers specifi es a new Java
ME standard API as a fi nal JSR that
includes source code for a reference
implementation of the technology. Ven-

dors are then free to develop their own
implementations.

Review. Java ME is the dominant mo-
bile-software platform with respect
to its installation and developer base.
However, the Java language’s “write
once, run anywhere” axiom doesn’t
apply to Java ME.2 Developers must
provide slightly different application
versions to address variations in JSR
sets and implementations across a wide
range of device capabilities and choice
of profi les, confi gurations, and APIs.
This requirement often results in doz-
ens of executables for a given title—
a phenomenon referred to as device
fragmentation, which considerably in-
creases operational costs over a prod-
uct’s life cycle. Fragmentation restricts
the devices that Java ME applications
can reach and suggests that it’s more
suitable in vertical applications that
target devices with similar capabilities
and Java API support.

Nevertheless, by targeting individ-
ual operating systems, developers us-
ing Java ME have access to a large set
of well-defi ned and mature JSRs. Java
applications targeting the Symbian plat-
form, for example, can reach about 70
percent of the world’s smartphones.
More than 80 JSRs provide MIDlet de-
velopers a rich set of additional technol-
ogies, although MIDlet programming
isn’t straightforward and requires seri-
ous Java development skills.

Commonly available JSRs that ex-
tend MIDP 2.0 on the Symbian platform
include the Bluetooth API (JSR 82), the
Wireless Messaging API (JSR 205), and
the Mobile 3D Graphics API (JSR 184).

.NET CF
Designed for applications on Windows
Mobile, .NET CF is a subset of Mi-
crosoft’s full .NET platform.3 .NET
CF preloads the Common Language
Runtime (CLR) engine in the device’s
memory to facilitate mobile-application
deployment. CLR provides interoper-

Windows CE,
Windows Mobile

.NET Compact
Framework (CF)

Common Language
Runtime (CLR)

Core
components

(subsets of the
full .NET class

library)

Unique .NET CF
classes,

device-speci�c
and third-party

extensions

C#, VB.NET

Flash Lite

Flash Lite player
runtime

ActionScript API

ActionScript

Operating
system

Runtime

Application
framework

Development
language

Symbian OS,
Windows Mobile,
Qualcomm’s Brew

Linux kernel

Android

Dalvik virtual
machine

Core Java libraries

Java

Java
Micro Edition (ME)

Symbian OS,
Palm OS,

BlackBerry OS, ...

Kernel-based virtual
machine (KVM)

Con�guration
(CLDC)

Pro�le (for example,
MIDP 2.0)

Optional packages,
JSRs: Media API,
Location API, 3D
and 2D Vector

Graphics API, …

Java

Window/Telephony
/Location/...

Manager (Android
SDK)

C/C++ libraries
(2D/3D graphics,

media and database
libraries, and so on

FIGURE 1. Software stacks for the reviewed mobile-application development platforms.

Comparison of operating systems, runtimes, application frameworks, and development

languages.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: MOBILE APPLICATIONS

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 79

ability with the underlying device’s op-
erating system, allowing the integra-
tion of native components into mobile
applications.

Features. In principle, the .NET CF
runtime is analogous to the Java virtual
machine (JVM). Instead of writing na-
tive code for the underlying operating
system, .NET developers write man-
aged code, which targets a managed ex-
ecution environment. Microsoft origi-
nally designed and developed the .NET

platform with support for multiple lan-
guages and operating systems, aiming
to reach an extended developer base and
to reuse existing libraries. However, the
.NET CF development tool, Visual Stu-
dio (VS.NET), currently supports only
two major .NET languages: C# and
Visual Basic (VB.NET). Furthermore,
it restricts operating system support
to Windows platforms, which repre-
sent only a small part of today’s mobile
-device products.

The core components are a subset
of the full .NET framework—roughly
30 percent of its classes and function-
ality. Some classes exist in both .NET
and .NET CF, but the .NET CF ver-
sion doesn’t necessarily support all the
full version’s class members (proper-
ties, methods, or events). Many classes
aren’t implemented at all, and others
are only partially implemented. Unique
.NET CF classes address device-specific
and third-party extensions.

The .NET CF user interface design
is based on a rich subset of .NET Win-
dows Forms.

Review. .NET CF is comparable to
Java ME with respect to providing a
managed runtime environment, rich li-
braries and components for reuse (ad-

vanced user interface components, net-
work connectivity, data management,
XML Web services, and so on), and fa-
miliar APIs from the full .NET frame-
work, such as the Windows Forms
controls. These features ease the tran-
sition for desktop developers to mobile
applications.

Using a runtime system for intermedi-
ate (managed) code implies relatively low
execution performance. However, unlike
Java ME, .NET CF is language-agnostic
and simply specifies Common Intermedi-

ate Language (CIL) instructions. .NET-
supported languages compile to the same
CIL, so the .NET CF runtime can exe-
cute them.

.NET CF demonstrates API-level
consistency and compatibility with the
full .NET platform. This design ap-
proach has had unforeseen memory
footprint costs, but .NET CF neverthe-
less represents a fast-paced implemen-
tation driven by a powerful vendor.
Developers know the hardware speci-
fications to program against and can
assume the availability of certain na-
tive software, such as Windows Media
Player. It therefore offers satisfactory
integration with device-specific func-
tionality—telephony, short-message
service, subscriber-identity-module
card access, Bluetooth, and so on—and
doesn’t exhibit Java ME’s fragmenta-
tion problem. On the other hand, .NET
CF targets a limited set of Windows
end devices, and the VS.NET develop-
ment tools include license costs.

Adobe Flash Lite
Flash Lite (www.adobe.com/products/
flashlite) is a proprietary technology,
popular as a multimedia and game pro-
gramming platform. Adobe created it
specifically to help vendors rapidly de-

ploy rich content and interactive inter-
faces to mobile devices.

Features. A Flash Lite application
stores its contents and GUI descrip-
tion in the vector-based SWF graphics
and animation format. It implements
its application and presentation logic in
ActionScript.

The number of original equipment
manufacturer (OEM), operator, and
developer adopters of Flash Lite is in-
creasing rapidly worldwide. Flash Lite

1.1 supports Flash 4 and ActionScript
1.0. Flash Lite 2.0 and 3.1—based on
Flash Player 7 and 9, respectively—sup-
port ActionScript 2.0. No support is
yet available for Flash Player 9-compat-
ible content based on ActionScript 3.0.

All versions support the World Wide
Web Consortium (W3C) Tiny stan-
dard,4 a mobile profile of W3C’s scalable
vector graphics (SVG) recommendation.

Review. The Flash Lite platform is a
reasonable choice for graphics-intensive
phone and PDA applications. Industry
adoption has increased because devel-
opers skilled in Flash for desktop appli-
cations can easily switch to Flash Lite
for mobile applications. Rapid develop-
ment is a primary benefit of Flash Lite.
It’s easy to learn and easy to migrate
Flash applications, and it includes a
rich set of designer/developer tools. Ad-
ditionally, it offers rich media support
(images, video, sound, and animation),
a relatively broad runtime installation
base, and small deployment files based
on vector graphics. As of Flash Lite 2.x,
it supports compressed SWF, and Flash
Lite 3.0 adds support for the popular
native Flash video (FLV).

Currently, Flash Lite is mostly suit-
able for creating animations, casual

UNLIKE JAVA ME, .NET CF IS LANGUAGE-AGNOSTIC
AND SIMPLY SPECIFIES CIL INSTRUCTIONS.

80	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

games, mobile Web-based Flash ap-
plications, front-end interfaces, and
device-specifi c content (wallpapers,
screen savers, and so on). However, it
isn’t suitable for developing full-fl edged
stand-alone applications, mainly be-
cause it lacks the powerful mobile-ori-
ented APIs of the Java ME platform.

Flash Lite exhibits relatively poor
graphics performance, partly because
of the complex processing required for
vector graphics. It ships with an exten-
sive toolset (Adobe CS5, Adobe Device
Central), but the toolset requires a li-
cense fee.

Although Flash Lite’s low-level de-
vice integration might seem to be a limi-
tation, third parties offer low-level de-
vice APIs that support the development
of innovative applications. For example,
the KuneriLite toolkit extends Flash
Lite capabilities in the Symbian plat-
form. The cost, of course, is greater be-
cause of fragmentation issues and mem-
ory footprint.

Android
Google launched Android (http://code.
google.com/android) in 2007, to ad-
vance open standards for mobile de-
vices. Android is an Apache free-soft-
ware platform with an open source
license for mobile devices based on
Linux. Its software stack for mobile

devices includes an operating system,
middleware, and key applications.

Features. Android applications are pri-
marily written in Java and compiled
into Dalvik executable (DEX) format, a
custom byte code. Each application ex-
ecutes on its own process, with its own
instance of the Dalvik virtual machine.
Dalvik runs DEX fi les, which are con-
verted at compile time from standard
class and JAR fi les. DEX fi les are more
compact and effi cient than class fi les.

Developers have full access to all the
frameworks and APIs that the core ap-
plications use and to Google-developed
software libraries. Android’s software
architecture is designed to simplify
component reuse. Any application can
publish its capabilities, and any other
application can then use those capabili-
ties, subject to security constraints en-
forced by the framework.

The Android software development
kit (SDK) supports authoring applica-
tions with rich functionality. Like the
iPhone, it can handle touch screens, ac-
celerometers, 3D graphics, and GPS as
well as collaboration among applications
like email, messaging, calendars, social
networking, and location-based services.

Review. Android supports a relatively
large subset of the Java Standard Edi-

tion (SE) 5.0 library, implying reduced
migration cost from Java desktop ap-
plications. It also supports several third-
party libraries. Similarly to Java ME,
application development is powered by
popular Java integrated development
environments (IDEs) such as NetBeans
and Eclipse. Android provides inherent
support for modular service-oriented ap-
plications and interapplication commu-
nication. Java ME’s MIDP 3.0 similarly
supports inter-MIDlet communication.

New platform releases introduce
many new user and developer fea-
tures—for example, account synchroni-
zation, improved media-playing perfor-
mance, and database and geolocation
API support—but also raise fragmenta-
tion concerns. Phones running Android
1.0, 1.5, 1.6, and 2.0 as applications
might have trouble working smoothly
across all the operating system versions.
The platform’s openness in the targeted
device stacks aggravates the fragmenta-
tion problem.

A Mobile-Game Case Study
We implemented four identical ver-
sions of a toy application, a game called
Snake (see Figure 2). The implementa-
tions let us compare the platforms with
respect to development effort and time
as well as several technical issues, such
as sound reproduction, still image dis-

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: MOBILE APPLICATIONS

(a) (b) (c) (d)

FIGURE 2. Screenshots related to the Snake game implementation developed in (a) Java ME, (b) .NET CF, (c) Flash Lite, and (d) Android.

See Table 1 for comparison data on the game implementation.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 81

play, menu and application interface
design, key events handling, memory
use, deployment fi le size, and reus-
ability of code authored for equivalent
desktop applications (see Table 1).

To ensure fair comparisons, we fo-
cused on evaluating the particulari-
ties of mobile-application development
rather than the different programming
language characteristics. Along this
line, we fi rst implemented the desktop
game application and then migrated the
applications to the mobile platforms,
reusing source code wherever possi-
ble—that is, we ported Java SE code to
Java ME and Android, C#.NET code
to .NET CF, and Flash (ActionScript)
code to Flash Lite. The game used rela-
tively simple graphics to convey snake
body movements in response to key-
pressing events. The implementation
included a short sound fi le that played
when the snake ate food. It also offered
pause, resume, and change functions
to adapt the snake’s speed, and it kept
high scores and game state in the de-
vice’s persistent storage.

The smoothness and expressive-
ness of the snake’s movement largely
depends on the device’s characteristics
(screen resolution, screen frame rate,
and processor frequency). We weren’t
able to quantitatively assess these char-
acteristics on the available platform
emulators.

Mobile gaming has been a major

driving force for the mobile-applica-
tion market. Java ME is currently the
de facto standard for downloadable
cell phone games,4 particularly because
it has a game API. Furthermore, Java
ME is the only framework providing a
low-level 3D graphics API. Flash Lite
is a popular gaming platform, mainly
because of its development speed and
suitability to graphics-intensive appli-
cations. Flash Lite 3.0 focuses more
on video and multimedia support than
game development. However, Flash
Lite is ideal for integrating games in
webpages—similar to developing Flash
movies for desktops. .NET CF and
Android haven’t yet gained signifi cant
market share in game development.

Desktop-to-mobile application port-
ing was more labored in Java ME.
Tools like JDiet (a Java SE 1.4-to-Java
ME CLDC converter) can be useful but
don’t support GUI conversion. We de-
signed the MIDlet’s menu templates us-
ing the Java ME Polish tool collection
(www.j2mepolish.org), which includes
build tools for creating application bun-
dles for multiple devices and locales; a
device database that helps adjust appli-
cations to different handsets; tools for
designing GUIs using simple CSS text
fi les; and utility classes. We had to port
JDBC-based storage—for example, to
store game state or scores—to RMS,
which isn’t a full-fl edged database sys-
tem but is similar to the shared-objects

approach taken in Flash Lite. How-
ever, the TiledLayer and GameCan-
vas classes of the Java ME Game API
were extremely useful for painting the
game’s landscape and conveying the
snake’s movement.

.NET CF and Android applications
were easier to develop because of their
improved compatibility with the full
.NET and Java SE frameworks, respec-
tively. The use of SQL databases in
both these platforms was also straight-
forward. We adapted a few C# method
invocations for .NET CF because it
didn’t support the corresponding librar-
ies. Android didn’t require such modifi -
cations. Furthermore, sound support
was poor in .NET CF, handling only
uncompressed sound playing, which in-
creases the application size. The Flash-
to-Flash Lite migration was relatively
effortless because we used the same Ac-
tionScript code in both cases.

We had to translate desktop ap-
plication key events to the respective
mobile phone’s keyboard events in all
platforms. The GUI design was rela-
tively easy using available Visual GUI
builders; for Android, we had to get
this tool through the third-party Droid-
Draw builder. Notably, the separation
of the program logic from the GUI de-
sign proved useful for all platforms,
letting us use the same game logic
classes for both the desktop and mobile
applications.

TA
B

L
E

 1 Technical issues related to the Snake game implementation.

Technical issue Java ME .NET CF Flash Lite Android

Development	effort	
(desktop	to	mobile	
porting)

Port	GUI	from	Swing	to	liquid-crystal	display	
user	interface	(LCDUI)	classes;	convert	the	
main()	method	of	the	base	class	to	the	MIDlet’s	
startApp();	convert	Java	Database	Connectivity	
(JDBC)-based	persistent	storage	to	Record	
management	system	(RMS)

Adapt	GUI	to	use	
Windows	Forms	
controls,	and	switch	
the	database	to	
SQL	Server	Mobile	
Edition

Adapt	GUI	
to	screen	
size

Make	changes	to	interfaces	
implemented	and	parent	
classes	extended;	switch	the	
database	to	SQL	Lite;	specify	
the	GUI	in	an	XML	fi	le,	using	
the	DroidDraw	GUI	designer

Lines	of	code ~1,100 ~800 ~600 ~900

Lines	of	code	
modifi	ed	to	port	the	
desktop	application

~400 ~150 ~50 ~200

Deployment	
application	size

29	Kbytes 63	Kbytes 12.6	
Kbytes

23	Kbytes

82	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

Platform Comparison
Table 2 evaluates the reviewed platforms
in five qualitative and quantitative ar-
eas: software architecture and techni-
cal issues, application development,
capabilities and constraints, developer
communities and market success, and
development tools.

The data reflects our product re-
views and development experience,
both prior to and after the Snake game
implementation. It also factors in re-
sults generalized from an informal on-
line survey we conducted of 32 mobile-
application developers. These results
are indicated by an asterisk in the is-
sue description. For each platform, at
least seven developers participated in
the survey, which included 16 ques-
tions regarding their experience with
the platform. The survey is available at
http://mobileapps.limeask.com. Some
quantitative information derived from
a compilation of the surveys and not
discussed here is available at http://
www2.aegean.gr/dgavalas/en/mob_
survey.pdf.

Platform Status and Trends
In current practice, devices vary along
so many axes that it’s almost impos-
sible to write a single version of a mo-
bile application to run on a broad range
of devices. Fragmentation increases

the production effort in almost the en-
tire software life cycle—driving up the
cost, lengthening the time to market,
and narrowing the target market. Bet-
ter standardization (for example, fewer
optional APIs and more detailed speci-
fications) and stricter enforcement of
standards (for example, using API veri-
fication initiatives and technology com-
patibility kits) could help in this regard.

Major players in the mobile-application
industry (such as platform vendors, de-
vice manufacturers, and operators) can
play a critical role in the war against
fragmentation.

Java ME is undoubtedly the plat-
form with the broadest deployment
base and still maintains the largest
market share, yet it’s the platform most
affected by fragmentation and so might
be displaced by alternative platforms.
Sun Microsystems has published a set
of guidelines to reduce the practice of
generating distinct executables for each
phone.6 Some tools for resolving Java
ME device fragmentation are already
available (for example, NetBeans Mo-
bility Pack 5.5 for CLDC), but there is
still a long way to go.

Along the same line, the Mobile Ser-
vices Architecture (MSA) has emerged
as an industry standard to reduce frag-
mentation and give developers a con-
sistent Java ME platform. In addition
to specifying what component JSRs
a compliant device must include, the
MSA also clarifies behavioral require-
ments to improve JSR predictability
and interoperability. The MSA defines
two stacks: a full stack that comprises
16 JSRs (JSR 249), and a subset of
eight JSRs (JSR 248). JSR 248 is being
pushed ahead of JSR 249 to help devel-
opers get an earlier start on MSA-com-

pliant applications. JCP has recently
approved JSR 248, but its adoption by
OEMs remains to be seen.

Java ME’s competitiveness against
platforms that target graphics-heavy
applications, such as Flash Lite, will
also depend on technologies that en-
able expressive, feature-rich content
on mobile devices. Along this line, Sun
Microsystems has recently released

Java FX Mobile (http://javafx.com), a
new platform and language with Rich
Internet Applications (RIA)-friendly
features, including a declarative syntax
of the JavaFX Script language for GUI
development. JavaFX Mobile lets devel-
opers build expressive interfaces while
reusing existing back-end Java code. It
also lets development team members
with no programming experience, such
as designers and graphic artists, create
graphics-intensive front ends for mo-
bile applications. However, OEMs will
decide JavaFX Mobile’s success by the
support they offer, for example, by in-
tegration of its binaries and runtime on
mobile handsets.

.NET CF will probably maintain
its developer base as long as Windows
handhelds remain in the picture. It’s a
powerful platform for programming
and accessing native components of
Windows-compatible PDAs and smart-
phones. However, its market share
isn’t likely to increase because porting
it to popular phone operating systems
is cumbersome. Specifically, it requires
implementing a platform-adaptation
engine to interface between the CLR
and the operating system.7

The release history of Flash Lite in-
dicates that Adobe has concentrated
more on supporting multimedia than
defining a powerful API for develop-

ing applications with rich functional-
ity. Despite the effort to establish Flash
Lite as a gaming platform, it lacks APIs
or classes specifically targeting game
development. For example, Flash Lite
3.0 doesn’t support the BitmapData
object that’s part of Flash 8 and use-
ful for game development. It also needs
to improve its sound handling. Fur-
thermore, comparative studies indicate

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: MOBILE APPLICATIONS

DEVICES VARY ALONG SO MANY AXES
THAT IT’S ALMOST IMPOSSIBLE

TO WRITE A SINGLE VERSION OF A MOBILE APPLICATION.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 83

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2 Comparison of programming platforms in � ve areas.

Issue description Java ME .NET CF Flash Lite Android

Software architecture and technical issues

Footprint	 ~128	Kbytes	for	storage	of	
kernel-based	virtual	machine	
and	associated	libraries

1.55	Mbytes	on	
Windows	Mobile-based	
Pocket	PC	2000/2002;	
1.35	Mbytes	on	
Windows	Mobile	for	
Pocket	PC	2003	or	
Windows	CE	.NET	
devices

450	Kbytes	for	the	
core	library	of	Flash	
Lite	2.1;	374	Kbytes	
for	Flash	Lite	3.1

3	Mbytes

Runtime	memory	
requirement

<	0.5	Mbytes ~	0.5	Mbytes 2–4	Mbytes Minimum	32	Mbytes	of	
RAM

Memory	
management

Automatic	memory	management	
provided	by	the	traditional	
garbage	collector,	which	
deallocates	memory	occupied	
by	objects	that	the	program	no	
longer	uses

Automatic	memory	
management	provided	
by	Common	Language	
Runtime	(CLR);	the	
CLR	garbage	collector	
manages	the	allocation	
and	release	of	memory	
for	an	application

Garbage	collection	
executed	
automatically	every	
minute	or	whenever	
an	application’s	
memory	use	
increases	by	20	
percent	or	more

Automatic	memory	
management	handled	by	
Dalvik’s	garbage	collector;	
garbage	collections	might	
noticeably	decrease	
performance

Device	support All	devices	support	Connected	
Limited	Device	Confi	guration	
(CLDC),	Mobile	Information	
Dance	Profi	le	(MIDP)	
(practically,	lacks	support	only	
for	Windows	Mobile-based	
Pocket	PCs)

Pocket	PC	2000,	
Pocket	PC	2002,	
Windows	Mobile	
2003-based	Pocket	
PCs	and	smartphones,	
embedded	systems	
running	Windows	CE	
.NET	4.1	and	later

Mobile	phones	and	
PDAs	from	major	
manufacturers	such	
as	Fujitsu,	Hitachi,	
LG,	Mitsubishi,	
Motorola,	Nokia,	
Panasonic,	Samsung,	
Sanyo,	Sharp,	and	
Sony	Ericsson

Mostly	HTC	devices	(Magic,	
Hero,	Tattoo);	also	T-Mobile	
(G1,	Pulse),	Motorola	Dext,	
Samsung	Galaxy	i7500,	
Acer	Liquid,	Sony	Ericsson	
Xperia	X10;	Android	
2.0-compatible	handsets	
announced	(Motorola,	
Samsung)

User	interface	
(UI)	components

High-level	LCDUI	components,	
such	as	Form	or	List;	low-level	
LCDUI	for	controlling	every	UI	
pixel;	support	for	SVG	(defi	ned	
in	JSR	287);	J2ME	Polish	allows	
design	along	with	animations	
and	effects	specifi	ed	in	external	
CSS-like	fi	les

Windows	Forms	
controls	(vary	for	
Pocket	PCs	and	
smartphones)

Nokia	Flash	Lite	
Feather	Framework	
(FL	2.x),	Sony	
Ericsson	Adobe	XD	
UI	components
(FL	1.1/2.x)

View	and	ViewGroup	
objects;	DroidDraw	tool	
serves	for	rapid	UI	design;	
J2ME	Polish	enables	
conversion	of	Java	ME	
MIDlets’	UI	to	Android-
compatible	UI

Development	
languages

Java	(CLDC/MIDP) C#,	Visual	Basic	.NET ActionScript	1.0,	
ActionScript	2.0

Java	(Android	SDK)

Packaging Java	Application	Description	
(JAD)	and	Java	archive	(JAR)	
fi	les

Cabinet	(CAB)	fi	le	
installers	

SWF	fi	les Android	package	(APK)	fi	les

Deployment	
methods

Over	the	air	(OTA),	Bluetooth/
IR,	Wireless	Application	Protocol	
(WAP)	push

OTA,	Bluetooth	 Bluetooth,	physical	
cable,	OTA

OTA,	Bluetooth

Server-side	
technologies*

Java	servlets,	JavaServer	Pages	
(JSP)

ASP.NET	Mobile	
Controls

Flash	Media	Server	
(uses	ActionScript	1	
for	server-side	logic)

Java	servlets,	JSP

Persistent	
storage	and	
database	support

RMS	and	Perst	Lite	from	
mObject

Local	database	support	
for	SQL	Server	Mobile	
Edition;	on	the	server	
side,	support	for	SQL	
Server

Persistent	storage	
through	shared	
objects;	on	the	server	
side,	support	for	
interaction	with	PHP	
scripts	and	use	of	
MySQL	database

Android	APIs	contain	
support	for	SQLite	database

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2

(C

O
N

T
IN

U
E

D
 O

N
 P

.
8

4
)

TA
B

L
E

 2

84	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: MOBILE APPLICATIONS
TA

B
L
E

 2
 (

C
O

N
T
IN

U
E

D
) Issue description Java ME .NET CF Flash Lite Android

Sound	handling	
and	supported	
formats

MP3	and	whatever	format	the	
device	supports

Uncompressed	pulse-
code	modulation	(PCM)	
fi	les	only;	support	for	
well-known	formats	
(WAV,	MP3,	and	so	on)	
offered	by	third	parties	
(such	as	Resco	Audio	
for	.NET	CF)

Sound	fi	les	
embedded	within	the	
SWF	fi	le;	supports	
MP3,	AIFF,	AU,	WAV,	
and	so	on;	no	support	
for	simultaneous	
playback	of	multiple	
sounds

3GP,	MP3,	MP4

2D/3D	graphics	
handling	and	
supported	
formats

All	MIDP	versions	support	the	
display	of	rasterized	images	(in	
PNG	format	only);	MIDP	added	
support	for	SVG	(JSR	226);	MIDP	
3.0	adds	support	for	GIF	images;	
support	for	mobile	3D	graphics	
on	Mobile	3D	Graphics	(M3G)	
format:	M3G	1.0	(JSR	184)	or	
M3G	2.0	(JSR	297)

Support	for	BMP,	JPG,	
GIF,	and	PNG	formats;	
doesn’t	support	SVG;		
Direct3D	mobile	
applications	available	
for	Windows	Mobile	5.0

Vector-based	
graphics	includes	
support	for	bitmap;	
doesn’t	provide	low-
level	3D	graphics	
API,	but	it’s	possible	
to	use	a	sequence	
of	images	exported	
from	a	3D	tool

Supports	PNG,	JPG,	and	
GIF;	doesn’t	support	SVG;	
supports	3D	graphics	via	
the	OpenGL	API

Application development

Learning	curve* Moderate	(developers	need	to	
be	familiar	with	several	APIs	
that	aren’t	part	of	the	Java	SE	
platform)

Average	(signifi	cant	
overlap	with	the	.NET	
platform	APIs)

Steep	(reuse	of	the	
same	ActionScript	
code)

Average	(signifi	cant	overlap	
with	the	Java	SE	platform	
APIs)

Developer	
community	base*

Large	community Relatively	large	
community

Relatively	large	
community

Fair-sized	and	fast-growing	
community

Debugger	
availability

Excellent Excellent Good Integrated	in	Eclipse;	
stand-alone	debugging	
monitor	also	available

Cross-platform	
deployment

Execution	on	any	device	
supporting	CLDC/MIDP,	but	
inconsistent	implementations	
across	vendors	necessitates	
separate	builds

Windows	Mobile,	
Symbian-based	
devices	(via	third-party	
tools)

Excellent	(supported	
by	top	fi	ve	mobile	
manufacturers;	best	
Web	compatibility)

Android	only,	because	of	
Dalvik	VM

Deployment	
speed	
(packaging,	
installing,	
testing)*

Slow	(fragmentation	problem) Relatively	fast Relatively	fast Relatively	fast

Capabilities and constraints

Functionality Varies	by	handset,	depending	
on	available	JSRs;	no	high-
resolution	pictures,	no	cell	ID,	
limited	fi	le	access

Limited	audio	support No	support	for	
accessing	native	
components

Touch	screen,	
accelerometer,	GPS,	
cell	ID,	interapplication	
communication

Event	model Event-handling	mechanism	
based	on	command	objects

GUI	events	bound	
to	methods	through	
multicast	delegates

Uses	the	powerful	
ActionScript’s	event	
model	(movie	clip	
and	object	events)

Inherits	the	Java	event	
model;	uses	a	special	
class	(intent)	that	enables	
application	responses	to	
external	events,	such	as	a	
phone	call

Phone	data	
access

Varies	by	handset,	depending	
on	available	JSR	75,	the	PDA	
Optional	Packages

Full None Full

Runtime	speed Average	(because	of	Java	
bytecode)

Average	(because	of	
CLR	managed	code)

Below	average	
(interpreted	
language)

Average	because	of	Java	
bytecode

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 85

that Flash Lite exhibits lower perfor-
mance and frame rate while consum-
ing more memory than Java ME.10 On
the other hand, Flash Lite appears a
natural choice for designing user inter-
faces and graphically rich applications.
In that sense, it lets designers into the
mobile-development space. A promis-
ing evolution path for Flash Lite seems
to lie in its synergy with different ap-
plication platforms, bringing together
the best of diverse worlds. Recently,
the Capuchin Project (http://developer.
sonyericsson.com/site/global/docstools/
projectcapuchin/p_projectcapuchin.
jsp) defined a Java ME API as a bridge
between Java ME and Flash Lite. It en-
ables use of the latter as the front end
and the former as the back end of ap-
plications, allowing developers to use
Flash tools for GUI design while still
having access to all the phone services
available to Java ME.

Android initially received an en-
thusiastic welcome from manufactur-
ers and developers, but some handset
manufacturers are taking longer than

expected to integrate it. Hence, its mar-
ket share isn’t growing as rapidly as an-
ticipated. Still, the Android developer
community seems to be growing—
mainly in comparison to Java ME. Its
future will largely depend on providing
technologies for simplifying the design
of multimedia-rich applications. Sun
Microsystems announced that Java FX
Mobile will be available on the An-
droid OS. Most important will be how
well Android handles fragmentation
problems. It’s too early to answer this
question now, given Android’s rela-
tively narrow installation base.

Because Android is a relatively
young software platform, it’s strug-
gling with a small number of available
applications. Google has invested in
attracting developers and preparing a
critical mass of applications prior to the
first Android phone release. Running a
large number of existing Java ME ap-
plications could also add value to An-
droid. Along this line, some vendors
are providing porting services to con-
vert existing Java ME titles to the An-

droid platform. Examples include Tira
Wireless and J2ME Polish.

Assessments
On the basis of our review, we’ve as-
sessed the appropriateness of each plat-
form with respect to four critical appli-
cation development requirements:

Portability
The diverse hardware and software
represented in today’s handheld devices
inevitably make portability a puzzle for
mobile-application developers. Porta-
bility primarily depends on runtime
support and the feasibility of achieving
identical look-and-feel and functional-
ity across platforms. In terms of run-
time support, Java ME is undoubtedly
the winner, followed by Flash Lite. An-
droid is likely to extend its deployment
base, and .NET CF will probably re-
main a Windows-only platform.

On the other hand, Java ME ex-
hibits fragmentation in cross-platform
application development. Flash Lite
is a better choice in this regard because

TA
B

L
E

 2
 (

C
O

N
T
IN

U
E

D
) Issue description Java ME .NET CF Flash Lite Android

Developer communities and market success

Developer	
community	and	
support*

Extensive MSDN Extensive Recent,	growing

Market	
penetration*

Extensive	(also	the	basis	of	the	
Danger	Sidekick	Platform)

Average Average Potential	to	gain	wide	
acceptance,	based	on	
the	support	of	34	major	
software,	hardware,	and	
telecom	companies

Distribution	and	
licensing

None	(Signed	Java) None	(third	parties	can	
provide	licensing)

None None

Development tools

Integrated	
development	
environment	(IDE)	
availability

Eclipse,	NetBeans Visual	Studio	.NET	
2008,	2010

Adobe	Flash	CS4,	
Adobe	Device	Central

Eclipse,	NetBeans	(with	
Android	plug-in)

Emulator	
availability

Free	emulator,	Sun	Java	
Wireless	Toolkit

Bundled	with	IDE Bundled	with	IDE Free	emulator

Development	tool	
cost

Free Free	(but	only	basic	
tools)

Varies:	free	but	
limited	with	Motion-
Twin	ActionScript	2	
Compiler	IDE

Free

* Information derived mainly from compilation of online survey reports.

86	 IEEE SOFTWARE 	 //	WWW.COMPUTER.ORG/SOFTWARE

of Adobe’s strict control over its runtime
environment. Android’s handling of frag-
mentation remains unclear given its slow
adoption pace and its alternative business
model, which is open source yet tightly
controlled by Google. Fragmentation
isn’t an issue for .NET CF, given its nar-
row range of supporting devices.

Functionality
Java ME best serves the aim of imple-
menting multimedia-rich full-fl edged
applications, such as games, through
the numerous APIs (JSRs) implemented
by OEMs to exploit handset capabili-
ties. .NET CF and Android applica-
tions also use rather powerful APIs.
Flash Lite is most suitable to graphics-
heavy applications.

Development Speed
Rapid time-to-market is a critical re-
quirement in mobile applications.
Taking advantage of developers’ pro-
gramming experience on desktop ap-
plications is the safest way to ease the
learning curve and shorten the develop-
ment time. For instance, Java develop-
ers will fi nd a natural fi t with Java ME
and Android, Flash developers with
Flash Lite, and so on.

Developers not familiar with any of

the platform foundation languages will
feel more comfortable and productive
with Flash Lite’s ActionScript. Nev-
ertheless, the development process in
traditional platforms such as Java ME
and .NET CF is accelerated because the
documentation and developer commu-
nity bases are extensive.

Performance
As mobile applications become more
computationally intense and require
faster runtime speeds and storage I/O,
performance also becomes a critical is-
sue. Metrics such as processing over-
head, memory consumption, frame
rate, and deployment fi le size all de-
pend on the particular development
platform toolset. For example, does
it support SVG Tiny, graphics buffer-
ing, compressed sound fi les, and so
on? Java ME, .NET CF, and Android
achieve comparable performance,
whereas Flash Lite has lagged in vari-
ous benchmarks.8

Even though market and appli-
cation requirements largely de-
termine the platform for mo-

bile development, our review offers
some specifi c and general guidance into

the assets and defi ciencies of available
tools as developers face the increasing
demand for applications on resource-
constrained devices.

References
 1. M. Kenteris, D. Gavalas, and D. Economou,

“An Innovative Mobile Electronic Tourist
Guide Application,” Personal and Ubiquitous
Computing, vol. 13, no. 2, 2009, pp. 103–118.

 2. S. Blom et al., “Write Once, Run Anywhere
A Survey of Mobile Runtime Environments,”
Proc. 3rd Int’l Conf. Grid and Pervasive
Computing (GPC 08), IEEE CS Press, 2008,
pp. 132–137.

 3. C. Neable, “The .NET Compact Framework,”
IEEE Pervasive Computing, vol. 1, no. 4,
2002, pp. 84–87.

 4. O. Anderson et al., Scalable Vector Graphics
(SVG) Tiny 1.2 Speci� cation, World Wide
Web Consortium (W3C) recommendation, 22
Dec. 2008; www.w3.org/TR/SVGMobile12.

 5. J. Soh and B. Tan, “Mobile Gaming,” Comm.
ACM, vol. 51, no. 3, 2008, pp. 35–39.

 6. Sun Developer Network, “Java ME: De-frag-
mentation,” 2006; http://developers.sun.com/
mobility/reference/techart/design_guidelines.

 7. A. Geffl aut et al., “Porting the .NET Compact
Framework to Symbian Phones-A Feasibility
Assessment,” J. Object Technology, vol. 5, no.
3, 2006, pp. 83–106.

 8. A. Koller, G. Foster, and M. Wright, “Java
Micro Edition and Adobe Flash Lite for Ar-
cade-Style Mobile Phone Game Development:
A Comparative Study,” Proc. ACM Ann.
Conf. South African Inst. Computer Scientists
and Information Technologists (SAICSIT 08),
ACM Press, 2008, pp. 131–138.

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: MOBILE APPLICATIONS
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

DAMIANOS GAVALAS is	an	assistant	professor	in	the	University	
of	the	Aegean’s	Department	of	Cultural	Informatics.	His	research	
interests	include	mobile	computing,	mobile	ad	hoc	and	wireless	sensor	
networks,	and	optimization	algorithms.	Gavalas	has	a	PhD	in	electronic	
engineering	from	the	University	of	Essex,	UK.	Contact	him	at	dgava-
las@aegean.gr.

DAPHNE ECONOMOU is	a	lecturer	in	interactive	multimedia	and	
hypermedia	at	the	University	of	the	Aegean’s	Department	of	Cultural	
Technology	and	Communication.	Her	research	interests	include	col-
laborative	virtual	reality	environments	for	learning	and	archaeology,	
human-computer	interaction,	and	multimedia	application	design	for	
mobile	devices.	Economou	has	a	PhD	in	computer	science	from	Man-
chester	Metropolitan	University.	Contact	her	at	daphne@ct.aegean.gr.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

